US 7,107,441 B2

7

executes setup display engine 170 in a process block 415. If
the hot key is not pressed during the pre-boot runtime,
process 400 proceeds to a process block 460, wherein the
boot target is launched and OS files 150 are loaded into
system memory 120.

In a process block 420, pre-boot interpreter 165 parses
and interprets ACPI namespace 300 to determine current
resource settings (“CRS”) and possible resource settings
(“PRS”) of processing system 100. The CRS and PRS are
described by data and control methods encoded in inter-
preted language code 160 and enumerated in ACPI
namespace 300. The CRS describe current configuration
settings of processing system 100 and the PRS describe
possible configuration settings of processing system 100.

Thus, pre-boot interpreter 165 passes the interpreted AML
data to setup display engine 170, which displays the CRS
and PRS on a display terminal in a user-friendly format.
FIG. 5 illustrates three exemplary user-friendly displays that
one embodiment of setup display engine 170 may provide.
A display 505 may be the first image the user is shown after
pressing the hot key during the pre-boot runtime. By moving
a cursor on the screen to highlight “system setup” and
pressing “enter”, setup display engine 170 generates a
display 510. Display 510 illustrates the CRS. For example,
“serial port 1” is currently assigned to address “0x2F8.” By
highlighting the “address” with the cursor and pressing
“enter”, setup display engine 170 generates a display 515.
Display 515 illustrates the PRS for the serial port 1. Again,
the user can effect a configuration change merely by moving
the cursor over the desired resource setting and pressing
“enter”. Upon pressing “enter”, setup display engine 170
calls pre-boot interpreter 165 to execute the appropriate
AML control methods necessary to effect the configuration
change to serial port 140.

Returning to FIG. 4, in a process block 425, setup display
engine 170 determines whether a configuration change was
requested by the user, such as described above. If a con-
figuration change was requested, process 400 continues to a
decision block 430. If a configuration change was not
requested, process 400 proceeds to process block 460,
described above.

In decision block 430, if the user requested a configura-
tion change to an ACPI compliant hardware device, then
process 400 continues to a process block 435 where setup
display engine 170 calls pre-boot interpreter 165 to execute
the requisite AML control methods to effect the changes in
hardware. After effecting the requested change, the boot
target is launched in process block 460.

On the other hand, if the user requested a configuration
change to a non-ACPI compliant hardware device in deci-
sion block 430, process 400 proceeds to a process block 445.
In process block 445, the BIOS executes the requisite legacy
APIs to effect the changes in hardware. Once the APIs
complete their task, the boot target is launched in process
block 460.

FIG. 6 illustrates one embodiment of a computer system
600 to execute interpreted language code 160 to interact
with hardware devices during the pre-boot runtime, in
accordance with an embodiment of the present invention.
Computer system 600 includes a chassis 605, a monitor 610,
a mouse 615 (or other pointing device), and a keyboard 620.
The illustrated embodiment of chassis 605 further includes
a floppy disk drive 625, a hard disk 630, a power supply (not
shown), and a motherboard 635 populated with appropriate
integrated circuits including system memory 640, firmware
unit 645, and one or more processors 650.

40

45

55

8

In one embodiment, a network interface card (“NIC”) (not
shown) is coupled to an expansion slot (not shown) of
motherboard 635. The NIC is for connecting computer
system 600 to a network 655, such as a local area network,
wide area network, or the Internet. In one embodiment
network 655 is further coupled to a remote computer 660,
such that computer system 600 and remote computer 660
can communicate.

Hard disk 630 may comprise a single unit, or multiple
units, and may optionally reside outside of computer system
600. Monitor 610 is included for displaying graphics and
text generated by software and firmware programs run by
computer system 600. Mouse 615 (or other pointing device)
may be connected to a serial port (e.g., serial port 140
described above), USB port, or other like bus port commu-
nicatively coupled to processor(s) 650. Keyboard 620 is
communicatively coupled to motherboard 635 via a key-
board controller (e.g., PS/2 keyboard controller 135
described above) or other manner similar as mouse 615 for
user entry of text and commands.

In one embodiment, firmware unit 645 may store inter-
preted language code 160, pre-boot interpreter 165, and
setup display engine 170 described above. In one embodi-
ment, hard disk 630 may store OS files 150 and OS
interpreter 155 described above. Similarly, system memory
640 may temporarily store ACPI namespace 300 while
computer system 600 is in use.

The above description of illustrated embodiments of the
invention, including what is described in the Abstract, is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illus-
trative purposes, various equivalent modifications are pos-
sible within the scope of the invention, as those skilled in the
relevant art will recognize.

These modifications can be made to the invention in light
of the above detailed description. The terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specifica-
tion and the claims. Rather, the scope of the invention is to
be determined entirely by the following claims, which are to
be construed in accordance with established doctrines of
claim interpretation.

What is claimed is:

1. A method, comprising:

providing an interpreted language code to a processing

system, the interpreted language code defining how to
interact with a hardware device of the processing
system; and

interpreting the interpreted language code to interact with

the hardware device of the processing system prior to
entering an operating system (“OS”) runtime mode of
operation of the processing system.

2. The method of claim 1 wherein the OS runtime mode
of operation is entered no earlier than the beginning of
loading an OS into system memory of the processing
system.

3. The method of claim 2, further comprising interpreting
the interpreted language code to interact with the hardware
device after entering the OS runtime mode of operation.

4. The method of claim 1 wherein the interpreted lan-
guage code is compliant with an advance configuration and
power interface (“ACPI”) specification.

5. The method of claim 4 wherein the interpreted lan-
guage code comprises ACPI machine language(“AML”).



